Installation of a Perkin Elmer hot cathode ionization gauge on my PVD chamber. I applied current to the filament briefly at atmospheric pressure and the filament did not burn out so it may have a yttria-coated iridium filament rather than tungsten or any other refractory element. This will be my main mid to high vacuum gauge, used in conjunction with a thermcouple gauge and a Baratron pressure traducer for backing pressure measurement. The gauge mounted up to a 2 3/4″ conflat. I have a HP 59822B ionization gauge controller which provides filament current and reads collector current and displays it in torr.
Thanks to Charles Alexanian for this additional information:
“…your assumption about your gauge is correct in that it is an iridium filament. That being said the yittria coating can be poisoned by a great many things requiring a re calibration of your system depending on which type or controller you are using. The tungsten filament versions stayed popular in chamber research because you could simply boil off anything that might condense on the filament… I have changed over my Bayard Alpert type gauges. (That is the technical term for the gauge you are showing) for inverted magnetron types, particularly the MKS903 type units because they give a analog voltage output and require no external controller. Additionally they can be easily disassembled and cleaned. The also have a higher starting pressure where I no longer need thermocouple gauges.”
The quartz thickness monitor is a Maxtek TM-100 that I picked up on ebay for under $100. The board is very corroded so after a lot of contact cleaning I was able to get it working. Displays rate in angstroms per sec and integrates to find total thickness. Surprisingly simple circuity, it’s all based around a single counter chip and of course 7 segment display drivers and such.